Lab Member Quentin Fouliard presented his research at ICPT 2020

We are excited to announce that our postdoctoral researcher, Quentin Fouliard, has participated in the 2nd International Conference on Phosphor Thermometry (ICPT 2020) today, July 27, 2020. Quentin previously participated at the inaugural edition of this conference in 2018 in Glasgow, Scotland. The conference regroups the experts of the growing phosphor thermometry community and had about 100 attendees for today’s online presentation. Quentin presented his ongoing work on the measurement of thermal barrier coating temperature gradients using the luminescence decay method.

 

Phosphor thermometry instrumentation for synchronized acquisition of luminescence lifetime decay and intensity on thermal barrier coatings

 

Read our paper in Measurement Science and Technology

Abstract:

Thermal barrier coatings (TBCs) are used to protect turbine components from extreme environments and to allow for the turbine system to operate at temperatures beyond the melting point of the underlying superalloy blade. Existing in situ temperature measurement methods for high temperature evaluation have inherent uncertainties that impose important safety margins. Improving the accuracy of temperature measurements on the materials in operating conditions is key for more reliable lifetime predictions and to increase turbine system efficiencies. For this objective, phosphor thermometry shows great potential for non-invasive high temperature measurements on luminescent coatings. In this work, a phosphor thermometry instrument has been developed to collect two emission peaks simultaneously of an erbium and europium co-doped yttria-stabilized zirconia TBC, enabling an extended temperature range and high precision of the in situ temperature assessment. The luminescence lifetime decays and the intensity variations of both dopants were captured by the instrument, testing its high sensitivity and extended temperature range capabilities for accurate measurements, up to operating temperatures for turbine engines. The results open the way for the applicability of portable phosphor thermometry instrumentation to perform effective temperature monitoring on turbine engine materials and support the advancement of innovative sensing coatings.

To view more posts like this, check out the Highlights page here.

You can also hear about Quentin’s paper in the All Audio Posts page here.

Poster Presentations in AVS 2020 International Twitter Competition

We are excited to announce that Dr. Seetha Raghavan and our post doctoral researcher, Quentin Fouliard, have participated in the American Vacuum Society (AVS) 2020 International Twitter Competition on July 8, 2020. It is a new online venue where people can share their research with a global audience, connect with the research community, and meet new colleagues. Dr. Raghavan presented her poster titled Inside the engine environment: Synchrotrons reveal Competing Influence of Thermal and Mechanical Loads on the Strain of Turbine Blade Coatings. Quentin presented his poster titled Thermal Barrier Coating Delamination Evaluation using Luminescence Modeling.

Paper on Characterizing Thermal Barrier Coating Delamination Using Photoluminescence Spectroscopy Published to Surface and Coatings Technology

We are pleased to announce that our paper titled “Quantifying Thermal Barrier Coating Delamination Through Luminescence Modeling” by post doctoral researcher, Quentin Fouliard, has been published in the journal Surface and Coatings Technology. This paper presents a unique approach to characterize thermal barrier coating delamination using photoluminescence spectroscopy. It introduces the very first modeling effort for accurate predictions of luminescence contrast and intensity on sensing EB-PVD coatings, accounting for their characteristic microstructure and through-the-depth anisotropy.

You can learn more about Quentin’s paper in the Highlights page here and in the All Audio Posts page here.