

Background and Introduction • Yttria-stabilized zirconia (YSZ) is a ceramic topcoat for

- thermal barrier coatings (TBCs) in gas turbines.
- TBCs protect turbine blades from extreme operating temperatures.
- Deposits, such as sand (Calcium-magnesium-aluminumsilicate CMAS) or volcanic ash, become molten, infiltrate and degrade the lifetime of TBCs.

Images of turbine blades have been used with permission by the German Aerospace Center (DLR)

a. Full depiction of an jet engine.

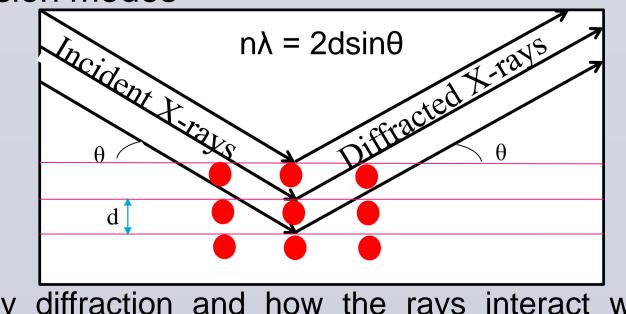
b. A full image of a high power turbine blade exposed to CMAS during operation.

c. A close-up of a high power turbine blade that has been exposed to CMAS during operation.

Motivation and Objectives

Motivation:

b.


2D X-ray Diffraction (XRD) provides high-resolution biaxial strain data for all phases present, allowing for a better understanding of how the introduction and ingression of CMAS degrades the lifetime of thermal barrier coatings.

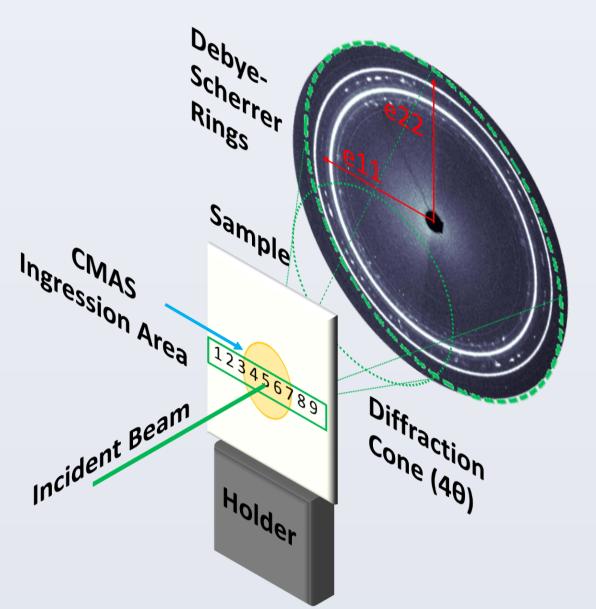
Objectives:

- Obtain in-plane (e11, e22) strain data at room temperature.
- Observe how CMAS has accelerated phase transformations within the coating and how these transformations have influenced the strain in the coating.

Theory

- XRD can provide information about the crystal structure, phase, and strain when the X-ray beam interacts with the material of interest.
- The angle of diffraction relates to the spacing of the atomic planes by Bragg's Law (Figure below):
- $n\lambda = 2dsin\theta$ • XRD experiments can be performed in reflection or transmission modes

X-ray diffraction and how the rays interact with crystal planes within a sample where n = integervalues, λ = wavelength of X-ray, and d = d-spacing

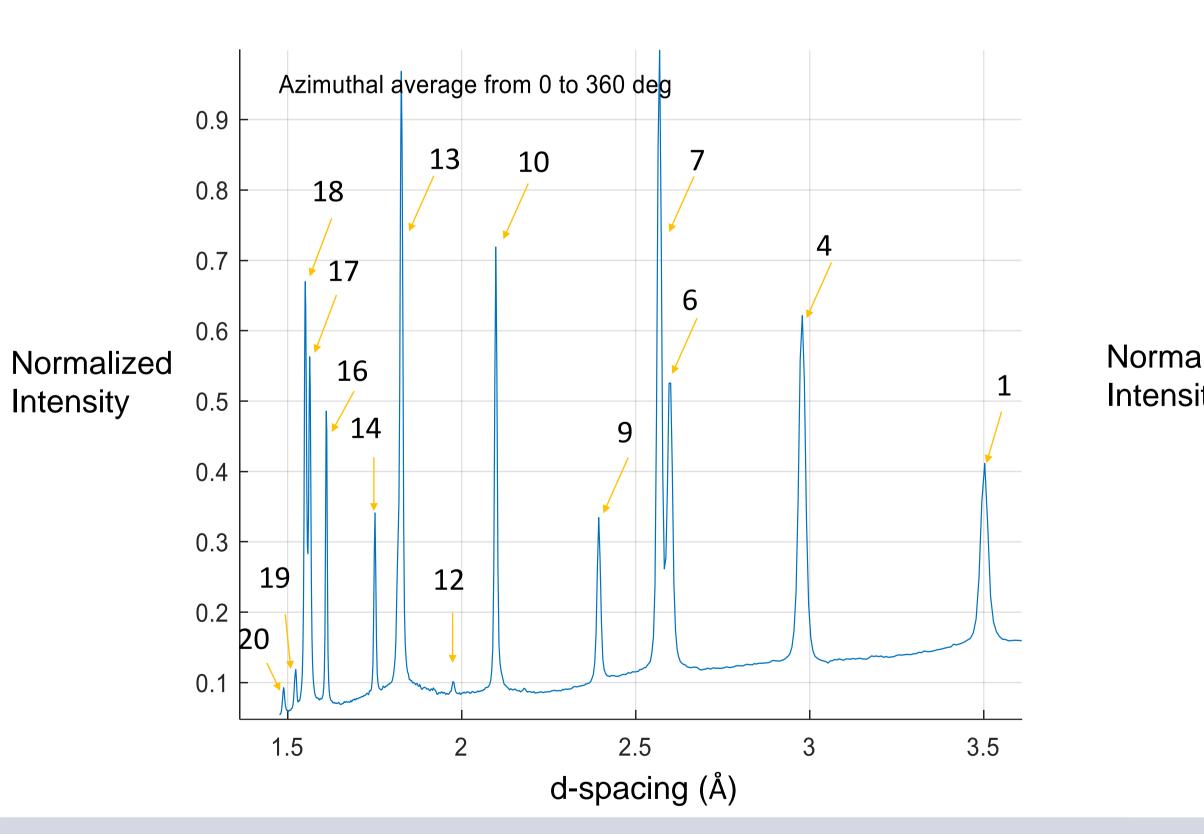

Synchrotron X-Ray Diffraction Study of CMAS Ingression in Electron-Beam Physical Vapor Deposition Thermal Barrier Coatings

Zachary Stein^a, Estefania Bohorquez^a, Lin Rossmann^a, Jun-Sang Park^b, Peter Kenesei^b,

a Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA b Advance Photon Source, Argonne National Laboratory, 9700 Cass Ave, Lemont, IL 60439, USA c German Aerospace Center, Linder Höhe, 51147 Colonge, Germany

Methods and Materials

- A high-energy (71 keV) X-ray beam of 30 x 300 µm² size impinged on samples.
- With the geometry used, diffraction information is collected roughly in two directions normal to the incident beam in the form of Debye-Scherrer rings.
- Shape and sizes of the rings change depending on the presence of internal strains.
- Phase and strain in the material can be determined referencing to known d-spacing from XRD databases.



Schematic view of XRD data collection

anc	Mate	rials											
abol	Co	mnoci	lion	Temperature (°C) Total Time									• High
abel A0		ure 7Y		Ter		U)			_	n)		coate	
					125	50			(LaboThe
B3	/ Y	SZ+CN			125				1	0			data
		30	ample:	suseu	during th	iis stud	IY						• The
													samp
		CM	AS C	hemic	al Con	nposit	ion						ingre
	Element		O_2	CaO	Al ₂ O			/IgO	TiO ₂				Addit
	Wt %		10	22	18	10		8	2				CMA
L	The ch	emical c	ompo	sition of	F CMAS	hy wei	aht ne	ercen	tane				
		critical c	ompo				gin p		lage				
		X-ray h	eam			X-r	av be	am					
	1	X-ray beam X-ray beam											Next &
					CMAS								• Dete
	Ļ												pha
		· · · · · ·				YS7 L							CMA
		SZ Layer			_	YSZ La							Calc CMA
		Alumina				Alum Substi	ina						
		ubstrate				Sabsti	ate						In-situ
													• Use
	0					• •	• • •						coati
	Sam	ple withc	out Civ	IAS		Sample	e with		45				• This
													comp
lont	ificatio	n											• In a
	moatic	<u>///</u>											techr
													CMA
													CMAS
		Azimuthal average from 0 to 360 deg											
		0.9										Coati	
		0.0	13										Envir
		0.8			10		,						tempThes
		0.7 - 1	8										to hig
			/										• The
	ormalized	0.6	17				5						ingre
	ensity	0.5	16				,	4		1			
						9							
		0.4	14										
		0.3 - 11 - 3											
		19	15	12		8	5		د /	2			
		0.2					Ļ						This ma
		0.1											Center (U.S. De
		1.5		2		2.5	0	3		3.5			operated
					d-sp	bacing	(Å)						Laborato
			Inten	sity vs o	d-spacin	g of sa	mple	with (CIMAS				Bohorqu
													Narapara
10	11	12	13	14	15	16	17	18	19	20			of CMAS Spectros
													Dynamia

YSZ

Peak Ide

Intensity vs d-spacing of sample without CMAS

	-	Z	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
Material	Al ₂ O ₃						Al_2O_3		Al_2O_3	Al_2O_3		Al ₂ O ₃		Al_2O_3		Al_2O_3	YSZ	YSZ	Al_2O_3	Y
		SiO ₂	(m)	(t)	(m)	(t)		SiO ₂			$Al_2O_3(o)$		(t)		SiO ₂		(t)	(t)		

of materials and phases in the samples with and without CMAS from the XRD peaks shown above

Jonathan Almer^b, Ravisankar Naraparaju^c, Seetha Raghavan^a

Summary

- h-resolution XRD experiments have been performed using ted samples with and without CMAS at Argonne National oratory.
- peaks of YSZ and alumina were obtained from the XRD a of the sample without CMAS.
- sample with CMAS provides the same peaks as the nple without CMAS, though less intense because of the ression of CMAS into the YSZ coating
- litional peaks have been observed due to the presence of

Future Work

Steps of this Study

- termining of the amount of tetragonal and monoclinic YSZ ases will provide better understanding of the effect of AS ingression in the coating.
- Iculation of strain will enable to understand the effects of AS ingression on residual strain in the coating.

tu XRD with CMAS infiltration

- of in-situ XRD to observe infiltration of CMAS into the ting as it occurs during a full thermal cycle.
- study would provide strain components, phase position, and CMAS infiltration over time into the coating.
- addition, this study could use different deposition nniques of applying TBCs and compare their resistance to

S ingression of Environmental Barrier ings

- vironmental Barrier Coatings (EBCs) allow for higher peratures than TBCs can withstand.
- ese coatings are more susceptible to CMAS infiltration due igher operating temperatures.
- current study can be extended to investigate the CMAS ession in EBCs.

References/Acknowledgements

- aterial is based on work supported by the German Aerospace (DLR) and used resources of the Advanced Photon Source, a epartment of Energy (DOE) Office of Science User Facility ed for the DOE Office of Science by Argonne National tory under Contract No. DE-AC02-06CH11357.
- uez E., Sarley B., Hernandez J., Hoover R., Laurene Tetard, raju R., Schulz U. & Raghavan S., "Investigation of the Effects S-infiltration in EB-PVD 7% Yttria-Stabilized Zirconia via Raman oscopy," 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 8–12 January 2018, Kissimmee, Florida.
- Naraparaju R., Hüttermann M., Schuly U. & Mechnich P., "Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings," Journal of the European Cermaic Society 37.1 (2017) 261-270. doi: 10.1016/j.jeurcerasoc.2016.07.027