Office of **Undergraduate Research**

UCF

Introduction & Motivation

In order for an aircraft or a rocket to work efficiently, longer, and at higher temperatures thermal barrier coatings need to be applied. Thermal barrier coatings are used to lower the chance of oxidation and decreases the conductivity of heat applied to the surface of the material. This protects the combustion chamber for a rocket or the turbine blade for an aircraft from damage. The deposition process can have a major effect on the performance of the thermal barrier coating. Plasma Spray Physical Vapor Deposition is an emerging deposition that combines the processes of previous deposition methods to improve the quality of coatings by providing customizable microstructures and properties.

[1] Combustion Chamber

Objectives

- > Understand the process of manufacturing PS-PVD coated samples and the effect of deposition time
- > Study the TBC structure of samples with different thicknesses through Optical Microscopy

Background

Thermal barrier coatings have played a key role in protecting engines from intense temperatures and an oxidizing environment. The coating is made up of four parts:

- > A ceramic coating which provides the key protection against heat and pressure.
- > A thermally grown oxide that grows as a result of oxidation
- > A metallic bond coat that protects material underneath from corrosion > The Substrate material the turbine blade or combustion chamber would be
- made of.

Top Coat

- Thermally Grown Oxide
- Bond Coat
- Substrate

The deposition of the thermal barrier coating will affect the properties and the durability. One of the most commonly used deposition for jet engines is Electron Beam Physical Vapor Deposition (EB-PVD) known for its columnar structures. Plasma Spray Physical Vapor Deposition (PS-PVD) is a relatively newer deposition that can reproduce similar structures. In PS-PVD, the coating material is vaporized by the thermal plasma, and condenses on the substrate creating a custom microstructure based on the gas compositions, the spray power, the deposition rate, and other factors. The flexibility and low pressure is a key factor of the deposition as it leads to the custom nature of the deposition.

Here are the two different microstructures and comparisons of the depositions:

[2] PS-PVD microstructure

Electron Beam Physical Vapor Deposition	PS-PVD
Columnar microstructure	Custom microstructure
High Cost	Low Cost
High Thermal Conductivity	Low Thermal Conductivity
ligh Strain Tolerance	High Strain Tolerance
ow Deposition Rates	High Deposition Rates
High Erosion Resistance	Custom Erosion Resistance
Coats Simple Designs	Coats Complex Designs
.ess Weight	Custom Weight
Smooth Surface	Custom Surface
Non-Uniform Gradient	Uniform Gradient

Manufacturing of Thermal Barrier Coatings Through Plasma Spray Physical Vapor Deposition

Taiason Cole¹, Eric Barker¹, Dr. Bryan Harder², Dr. Seetha Raghavan¹

1. University of Central Florida 2. NASA Glenn Research Center

Substrates:

> The substrates were machined with the following parameters:

Substrate	Shape	Diameter of Substrate	Thickness of Substrate	
nconel 718	Disk	25.4 mm	3.5 ± .5mm	
Ni Superalloy	Disk	25.4 mm	3.1 ± .5mm	

Grit Blasting:

- Kind of Spray Used: Alumina Based
- Pressure: 60 PSI
- Distance from Spray: 6 to 8 inches away
- Sprayed until a satin finish
- Roughens the surface of the material so that the coating sticks to the surface
- better

Grit-Blasting System

Deposition:

- > The samples were spot-welded to an Inconel 716 plate with NiCr strips and then connected to an arm on the PS-PVD rig
- > The pressure of the rig was decreased to about 0.78 0.79 torr
- > They were then sprayed with a vapor of 7-8% Yttria Stabilized Zirconia particles along with Argon and Helium gas Two sets of samples were deposited
- > The thickness was measured afterwards through the use of a caliper

Thickness can	change depen	ding on deposi	ition time, spra	y angle, power,	etc.

ubstrate	Sample Names	Deposition Time	Thickness of TBC
iconel 718	APO, BPO, CPO	5 minutes	90 – 120 μm
i Superalloy	D2P0, D18P0, D35P0	20 minutes	160 – 180 μm

For these two sample sets the main variable examined was the difference between the two thicknesses.

Laser Parameters:

- Deposition Angle: 0°
- \blacktriangleright Particle Size: 20 25 µm
- Powder Feed Speed: 150 rpm
- Current: 1800 amps
- Pressure: 0.78 0.79 torr
- Voltage: 45.7 V
- Power: 82 KW

The samples are being sprayed with the coating

The Optical Images of the Depositions:

- > Here are two sets of six samples, the first set being the samples who were deposited for 20 minutes and the next set being the samples that were deposited for 5 minutes
- The thicker coatings had a wider variation in column size than thinner coatings.
- There also appears to be more visibility of the bottom in the thicker coatings verses the thinner coatings which more has of spots of the bottom

APO Bottom

5 Minutes Deposition:

BPO Bottom

CPO Bottom

D2P0 Top

Samples before grit-blasting

Samples after grit-blasting attached to a mounting plate

A student spot-welding the samples

[3] Plasma Spray Physical Vapor Deposition Rig

D2P0 Bottom

Results

- Acquired 6 samples coated with 7-8% yttria stabilized zirconia separated into two groups of different thicknesses prepared for future study
- > Investigation of the samples through Optical Microscopy
- Important for studying the structure of the depositions
- > Developed an idea to obtain the thicknesses desired based on deposition time and laser processing parameters given
- \succ A 20 minute deposition leads to a thickness of about 160 180 μ m \rightarrow A 5 minute deposition leads to a thickness of about 90 – 120 μ m

Future Work

The next step would be to gather a set of samples that had different spray angles 0, 30, and 60 degrees. Here is a schematic of the coating structures for different

The next step would be to perform Raman spectroscopy on the samples and a set of EB-PVD samples and find the peak shift which indicates residual stress using the spectrometers shown below.

The end goal is to be able to compare EB-PVD properties with PS-PVD properties to better understand the capabilities of PS-PVD coatings leading to more durable high temperature components in aerospace applications.

Acknowledgements and References

Yang, J.; Zhao, H.; Zhong, X.; Shao, F.; Liu, C.; Zhuang, Y.; Ni, J. & Tao, S. Thermal Cycling Behavior of Quasi-Columnar YSZ Coatings Deposited by PS-PVD Journal of Thermal Spray Technology, 2017, 26, 132-139 Manero, A.; Sofronsky, S.; Knipe, K.; Meid, C.; Wischek, J.; Okasinski, J.; Almer, J.; Karlsson, A. M.; Raghavan, S. & Bartsch, M. Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions JOM, Springer Nature, 2015, 67, 1528-1539

Knipe, K.; Manero, A.; Siddiqui, S. F.; Meid, C.; Wischek, J.; Okasinski, J.; Almer, J.; Karlsson, A. M.; Bartsch, M. & Raghavan, S. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction Nature Communications, Springer Nature, 2014, 5 von Niessen, K.; Gindrat, M. & Refke, A. Vapor Phase Deposition Using Plasma Spray-PVD™ Journal of Thermal Spray Technology, Springer Nature, 2009, 19, 502-509

Harder, B. J.; Zhu, D.; Schmitt, M. P. & Wolfe, D. E. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition Journal of Thermal Spray Technology, 2017 Schmitt, M. P.; Harder, B. J. & Wolfe, D. E. Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition (PS-PVD) thermal barrier coatings Surface and Coatings Technology, 2016, 297, 11 – 18

[1] https://blogs.nasa.gov/J2X/tag/main-combustion-chamber/

[2] Schmitt, M. P.; Harder, B. J. & Wolfe, D. E.Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition (PS-PVD) thermal barrier coatingsSurface and Coatings *Technology,* **2016***,* 297, 11 - 1

[3] <u>https://www.grc.nasa.gov/WWW/StructuresMaterials/DPC/facilities/ps_pvd.html</u> [4] Harder, B. J. & Zhu, D. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings NASA Glenn Research Center, 2011

Use of PS-PVD Rig and Optical Microscopy - Dr. Harder at NASA Glenn Center, Cleveland Ohio