
Future Work
Achieve high quality speckle pattern for DIC
• Incorporate high-temperature paint into an airbrush
• Refine parameters
• Refine processing parameters

Relate results
• DIC strain vs. Lattice strains
• Investigation of Stress-dependent phase transformations

Characterization of Additively Manufactured Inconel 718 for 
Extreme Environments Through Synchrotron X-ray Diffraction

Recent developments in additive manufacturing (AM) have led to
the investigation of its applications in the aerospace industry,
specifically for the production of complex single-component parts.
Inconel 718 (IN718) has been extensively developed for
applications in turbine engines and power generation due to its
favorable creep, fatigue, and oxidation resistance. This work aims
to characterize the effect of the AM process on IN718 and observe
as-processed material under thermomechanical load.
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• Investigate state of residual strains in IN718 as a result of AM Process
• Observe in-situ thermomechanical effect on lattice and global strain
• Relate lattice strain behavior to global strain in the material
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X-ray Diffraction (XRD) Analysis
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• Strain analysis from ring (R)
deformation

• Composition analysis from peak
position and integrated intensity
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Lattice planes, or “peaks”, of FCC γ matrix
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Determination of strain
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Determination of phase volume fraction (PVF)
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1. Correct for experimental conditions:

2. Calculate PVF

median: 0.0014

ɣ

0.40ɣ

0.30ɣ

0.20ɣ

0.10ɣ

0ɣ

-0.10ɣ

-0.20ɣ

-0.30ɣ

-0.40ɣ

Eyy StrainExx Strain

0.20ɣ

0.15ɣ

0.10ɣ

0.05ɣ

0ɣ

-0.05ɣ

-0.10ɣ

-0.15ɣ

-0.20ɣ

-0.25ɣ

median: 0.0013

Process results in 
components with 

anisotropic properties

Δεresidual

ξ= 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓
𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑝𝑜𝑖𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛
𝑠𝑢𝑏𝑠𝑒𝑡

Digital Image Correlation (DIC) Analysis
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A: Applied speckle pattern on tensile sample with 5
mm diameter.
B: Heater with 4 mm hole for camera.
C: Cropped image.
D: One subset of 60 pixels; step size of 15 pixels is
represented by grid of small white dots.
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XRD of Textured Material
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Non-uniform distribution of crystals 
causes 2D diffraction rings that are 
“textured” (non-continuous)
This results in inaccurate values 

for R around the azimuth
 For textured rings, only most 

intense ranges around the 
azimuth were used to calculate 
strain

High Temperature DIC
Left: Image of heated
sample without filter;
speckle pattern cannot
be discerned.

Right: Image of heated
sample with filter;
speckle pattern is visible.
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Spectra of Filter and Heater Lamp

Filter Lamp

Visible light IR light

IR heater lamps obscure speckle pattern by emitting light in the
orange, red, and infrared wavelengths. A blue filter is used to block
enough visible light to reveal speckle pattern.


