Characterization of the Microstructure of SLM IN718 Under Extreme Environments
Brooke Sarley¹, Albert Manero¹, Katia Arzt², Janine Wischek³, Jonathan Almer³, John Okasinski³,
Marion Bartsch⁴, Seetha Raghavan⁴
¹. College of Engineering and Computer Science, University of Central Florida, Orlando, FL, 32816, USA
². The German Aerospace Center (DLR), Cologne, Germany
³. Argonne National Laboratory, Lemont, IL, 60439, USA

Introduction
The SLM processing of Inconel 718 holds great promise for the ease of manufacturing of turbine blades that withstand extreme temperatures, heat fluxes and high mechanical stresses associated with engine environments. The complexity of these extreme operational conditions demands precise knowledge of failure initiation within the material.

Motivation & Background

Solvus & 1

Objective
- Investigate variation in phase composition along build direction as a result of SLM process
- Observe in-situ high temperature microstructure evolution
- Characterize role of heat treatment
- Quantify residual stress and strain in as processed and heat treated SLM IN 718

Experimental Setup
(A) Selective Laser Melting (SLM) processing of samples
IR Heater
Sample
High Energy
X-ray

Variation with Build Direction
Sample 4 exhibits a microstructure closer to wrought IN718 (S). Greater volumes of precipitates in Sample 1 reflect the growth near the baseplate.

Effect of Heat Treatment
Heat Treatment: 1100°C for 1 hour, quenched and hardened at 720°C for 1 hour and 620°C for 1 hour, 1100°C for 1 hour and quenched
- High 6 precipitation is a result of SLM process
- Heat treatment can affect concentration of 6, but does not eradicate it completely
- Solvus temperature conditions may not apply
- As processed samples are weaker than wrought IN 718
- Extended exposure to high temperature strengthens SLM IN718

Future Work
- Calculate volume fraction based on intensity
\[V_{\text{ax}} = \frac{I_{(hkl)\alpha}u^{2}}{\int F_{(hkl)\alpha}L_{\text{PP}}(u^{2})m_{(hkl)}I_{0}^{2} \text{d}u^{2}} \]
- Find phase volume fraction for each scan and establish phase volume evolution due to exposure to high temperatures

Acknowledgements
- Use of the Advanced Photon Source, an Office of Science Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratories, was supported by the US DOE under Contract DE-AC02-06CH11357.
- This material is based upon work supported by the National Science Foundation grants DMR 1337750 and CMMI 1352825.
- This project was supported by NASA FLORIDA and the National Aeronautics and Space Administration through the University of Central Florida/Florida Space Grant Consortium.
- The SURF Scholar program at the Office of Undergraduate Research at UCF.
- The UCF Research & Programming at UCF.
- The Cuban program at UCF

References