CMAS Ingression Study on EB-PVD Thermal Barrier Coatings using Synchrotron X-Ray Diffraction

Zachary Steina, Sandip Haldara, Jun-Sang Parkb, Peter Keneseib, Jonathan Almerb, Ravisankar Naraparajua, Seetha Raghavana

a Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA
b Advanced Photon Source, Argonne National Laboratory, 9700 Cass Ave, Lemont, IL 60439, USA
c German Aerospace Center, Linder Höhe, 51147 Cologne, Germany

Motivation and Objective

Motivation:
- During CMAS ingestion, yttria is depleted
- Causes phase transformations within the coating
- Increases strain and risk of failure
- Decreases lifetime expectancy
- High-energy X-ray diffraction can quantify phases present

Objective:
- Determine the effect of CMAS ingestion on TBC by measuring the phase volume fraction (PVF) of the monochromatic phase (mPVF) present in the coating

2D XRD & Phase Volume Fraction Theory

- High-energy X-rays transmit through material, producing unique Debye-Scherrer rings according to the lattice translating of the present crystalline phases
- Rings hold information regarding the amount of phases present, texture, and strain within the material
- Phases can be identified through reference XRD databases

Experimental Setup

Sample Table: of samples used during this study with their parameters

<table>
<thead>
<tr>
<th>Label</th>
<th>Composition</th>
<th>Temperature (°C)</th>
<th>Total Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>Pure 7YSZ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A2</td>
<td>Pure 7YSZ</td>
<td>1225</td>
<td>10</td>
</tr>
<tr>
<td>A3</td>
<td>Pure 7YSZ</td>
<td>1250</td>
<td>10</td>
</tr>
<tr>
<td>B2</td>
<td>7YSZ-CMAS</td>
<td>1250</td>
<td>1</td>
</tr>
<tr>
<td>B3</td>
<td>7YSZ-CMAS</td>
<td>1250</td>
<td>10</td>
</tr>
</tbody>
</table>

The chemical composition of CMAS by weight percentage

<table>
<thead>
<tr>
<th>Elements</th>
<th>SiO\textsubscript{2}</th>
<th>CaO</th>
<th>Al\textsubscript{2}O\textsubscript{3}</th>
<th>FeO</th>
<th>MgO</th>
<th>TiO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt %</td>
<td>40</td>
<td>22</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Introduction

- Thermal barrier coatings (TBCs) are applied to turbine blades to insulate superalloy blades in jet engines
- Yttria-stabilized zirconia (YSZ) is the standard material for TBCs
- Coating is applied through Electron-Beam Physical Vapor Deposition (EB-PVD) resulting in a columnar microstructure
- Deposits, such as sand or volcanic ash, enter the engine, melts and ingresses into the coating during operation \[1,2\]

Conclusion

- Depth of CMAS ingression can be quantified through mPVF
- CMAS has a significant effect on the amount of monochromatic phases present in the coating
- This effect can be seen throughout the depth of the coating
- mPVF decays exponentially throughout the depth of the coating
- Annealing time strongly affects the tetragonal to monochromatic phase transformation
- Longer annealing times result in higher monochromatic phase
- CMAS is able to ingress further into and react with the coating

Future Work

- How does the deposit ingestion effect the strain state of the coating
- How does annealing of the coating affect the strain state of the coating

Acknowledgements & References

This material is based upon work supported by National Science Foundation Grants DMR 1337798 and OISE 1460045 and by the German Aerospace Center (DLR). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

References: