

RAMAN STUDIES ON EB-PVD 7 wt% YTTRIA-STABILIZED ZIRCONIA COATINGS WITH CMAS DEPOSITS Estefania Bohorquez¹, Chance Barrett¹, Laurene Tetard¹, Ravisankar Naraparaju², Uwe Schulz², Seetha Raghavan¹

¹University of Central Florida, Orlando, Florida, USA

²Institute of Materials Research, German Aerospace Center, Cologne, Germany

Key Words:

Thermal barrier coatings (TBCs); Calcium–magnesium–alumina–silicate (CMAS); Microstructure; Raman Spectroscopy

Motivation

- EB-PVD TBCs have been used to extend the life of jet engine turbine blades by protecting the substrate alloy from extreme thermal loads.
- EB-PVD TBCs have a strain-tolerant columnar microstructure with gaps that can be filled with

Ex	peri	imer	nt Se	etup
-				

• 7YSZ was deposited on alumina substrates using EB-PVD

• CMAS is deposited in the center of the sample

label	Composition	Temperature (°C)	Total time (h)	
B1	7YSZ+CMAS 1	1225	10	

Initial Observations Sample **B1** Sample **B2** Sample **B3**

Stress Measurements on B3

 Tracking the shift of the 640 cm⁻¹ Raman peak allows us to know about the type of stresses that are present within our TBC

Stress (MPa)

CMAS oxides.

• Calcium-magnesium-aluminum-silicate (CMAS) or CaO, MgO, Al₂O₃, SiO₂, can deteriorate TBCs when this sand like material is ingested in the turbine.

- CMAS affects the life of TBCs due to thermochemical attack and thermomechanical effects
- Knowing the impact of CMAS interaction will help to quantify and mitigate their effects
- Raman spectroscopy has the potential to track phase

• Points of interest: Area outside CMAS infiltration (3), edge of CMAS infiltration (4) and CMAS center of infiltration (5).

Raman Spectra Collection Parameters

- 300RA WITec Confocal Raman microscope
- He:Ne 532 nm laser source

Laser power: 22mW

CMAS 1 Composition (Melting Temperature 1230°C)

Oxide	CaO	MgO	Al ₂ O ₃	SiO ₂	FeO	TiO ₂
Wt%	22	8	18	40	10	2

Results as a Function of Location & Heat Treatment

Raman Spectra **Comparison at Point 3**

Raman Spectra **Comparison at Point 4**

Raman Spectra Comparison at Point 5

Sample B1, B2 and B3 showing the deposits after infiltration and heat treatment.

Preliminary qualitative analysis using an optical microscope at center point of infiltration (point 5):

- CMAS begins to melt, react, and infiltrate between 1230°C and 1250°C.
- B1 displays distinctive separation between CMAS grains and TBC surface: No indication of CMAS interaction with 7YSZ.
- Less CMAS was found on top of samples B2 and B3 compared to B1

Stress map at surface

• At the surface of the coating where there is more of the monoclinic phase, the stress map shows more tensile stress

Methods

 Raman spectroscopy is a nondestructive technique investigate the composition of materials used to scattering.

 The unique spectra caused by vibrational modes of bonds in the material can be linked to specific compositions: a chemical fingerprint

Monoclinic Phase volume fraction can be calculated

• At point 3 there was no monoclinic phase signal found for any sample

• Monoclinic peaks were found for both B2 and B3 at CMAS-localized areas indicating a reaction has taken place • B3 has the most dominant monoclinic peaks throughout as a result of longer heat treatment

• Point 5, shows less intense signals compared to point 4 as a result of the thick CMAS overlay

Stress map 90 µm below surface

- Raman spectroscopy can also give us depth resolved measurements
- At a depth of 90 µm where the monoclinic phase is in smaller quantities, the stress is here is more compressive

Conclusions

- These results show that monoclinic peak identification is correlated with CMAS infiltration.
- Monoclinic phase volume fraction directly depends on CMAS infiltration temperature and reaction time.
- Raman imaging appears as an effective technique, not requiring any specific surface preparation, to track the 182 peak distribution in zirconia scales after oxidation due to CMAS.
- The method provides, in a single scan, not only structural and mechanical information, but also information about the corrosion process.
- Raman Imaging appears ass an effective technique, not requiring any specific surface preparation, to track the 182 cm⁻¹ peak distribution in zirconia scales after