WICHTIGER HINWEIS

Alle Seiten mit Abbildungen werden Ihnen am Ende des Dokumentes zusätzlich in Bildqualität zur Verfügung gestellt.

Mit freundlichen Grüßen
Ihre TIB

IMPORTANT NOTICE

All the pages featuring illustrations have also been made available for you in picture quality at the end of the document.

Many thanks for your understanding,
Your TIB
Simulations Mapping Stress Evolution in High Temperature Ceramic Coatings under Thermal-Mechanical Conditions

Kevin Knipe, David Siljee, Albert Manero, Seetha Raghavan
University of Central Florida, Orlando, FL 32826

John Okasinski\(^1\), Jonathan Almer\(^2\)
Argonne National Laboratory, Argonne, IL, 60439

and

Sendil Rangaswamy\(^3\)
Intelligent Automation Inc., Rockville, MD, 20855

Finite element simulations representing thermal barrier coatings on turbine blades enabled mapping of the stress evolution within the multi-layer configuration under thermal-mechanical conditions. The study aims to accurately model the transient strain behavior throughout a load cycle due to plasticity, creep, and oxide growth. The results were compared with *in-situ* experimental quantitative measurements performed previously using synchrotron X-ray diffraction. The studies verify the stress within the thermally grown oxide for critical combinations of temperature and load. These numerical models can be used to predict in-cycle stresses that lead to eventual failure of the coatings.

I. Introduction

THERMAL barrier coatings (TBC) have been of interest to the aerospace industry for application on turbines since the 1950s, and became widely used in the 1980s after the development of the new industry standard Yttria Stabilized Zirconia (YSZ). The low thermal conductivity of these coatings allows them to adequately protect the blade substrate from high operating temperatures, which can be in excess of 1000°C. However, at high temperatures the multilayer nature of the applied coating can lead to crack propagation and delamination due to the mismatch of thermal expansion coefficients and the induced thermal gradients. Through various studies, failure in TBCs is observed to originate from the stress experienced at the interface between the inter-metallic bond coat and thermally grown oxide (TGO) layer. The TGO layer developed is the intermediate layer in the system that grows between the substrate and the topcoat with thermal cycling and the resulting oxidation. TGO stress is associated with eventual failure of the system, and as such these stresses are to be examined in the model. Under loading, the TBC fails due to a number of factors. These include TGO growth, interfacial roughness\(^1\), creep in the system, complex loading\(^2\), and thermal expansion mismatch of each layer of the TBC system\(^3\).

Modeling of the material behavior under thermal-mechanical cycling is essential to investigating both the stress propagation and damage effects. Numerous studies have been done on modeling crack propagation and delamination of the TBC coatings under various thermal and mechanical fatigue conditions\(^4,5,6,7\). It has been found that the failure of the coating system often occurs, resulting from the high stresses developed in and around the TGO-Bond Coat interface. These conditions cause rumpling of the rigid TGO layer creating significant localized stresses, which cause crack initiation and propagation\(^8\). Work has been by done by researchers to obtain closed-form solutions of thermal residual stress field under the effects of non-linear coupled temperature gradient effects, TGO growth, and elastoplasticity deformation during thermal cycling\(^9\).

\(^1\) Assistant Professor, Department of Mechanical and Aerospace Engineering, Senior Member, AIAA.
\(^2\) Physicist, Argonne National Laboratory.
\(^3\) Senior Scientist, sendilr@i-a-i.com.
While there has been significant experimental research done in the after cycling fatigue effects, validated predictions of the stress evolution throughout the thermal-mechanical cycle are limited. To meet the challenges of studying turbine blades under operating conditions, thermal and mechanical loads have been applied to samples to simulate the in-cycle conditions, while allowing in-situ measurements using X-ray diffraction in our recent work. These high-resolution strain measurements are then used to validate nonlinear material behavior, which causes stress relaxation throughout a cycle.

Finite element models, which include creep and TGO growth, were developed to show the transient strain evolution of the TBC layers while being raised to and held at high temperature. Different creep models are tested for the bond coat and TGO layers to compare the stress relaxation realized from the experimental results. A validated model of the in-cycle strain behavior allows for the creation of models predicting TGO failure under cyclic loads. For models simulating cyclic loading conditions, swelling behavior is included in the element material models to represent growth of the TGO layer. This study will show the stress progression throughout a high-cycle life span of a coated turbine blade.

II. Experimental

Parameters for the numerical simulation were based on experimental studies of Electron Beam Physical Vapor Deposition (EB-PVD) coated nickel-based super-alloy substrate samples which have been subjected to thermal-mechanical load cycles and monitored in-cycle via synchrotron x-ray diffraction strain measurements. Simulating the fatigue analysis of the coatings, the samples were pre-cycled to various stages of a TBC life cycle. Three samples were manufactured for as-coated, 50 cycles, and 200 cycles. These samples, with dimensions shown in Figure 1, were subjected to a load cycle representative of that experienced by a turbine blade.

Three tensile mechanical stresses of 16, 32, and 64 MPa, were applied throughout separate thermal cycles to simulate the centrifugal loads on turbine blades. For each test, the samples were subject to uniform heating to a temperature of 1120 °C. The samples were then held at high temperature for duration of one hour. Strain measurements were collected for each layer at the data collection points shown in Figure 2.

The tensile specimens, shown in Figure 1, were used to allow for in-situ strain measurements in the layered profile. The applied thermal loading cycle is shown in Figure 3. The high energy beam of 86 keV was oriented as shown in Figure 2 while moving the sample laterally for the depth-resolved layer measurements as shown in Figure 4. The X-ray images were taken with a 2D CCD and analyzed for strain development across each layer while paying particular attention the strain evolution in the TGO region. Further detail on the experimental setup is described by Diaz et al.

III. Modeling

The TBC coated tensile specimens were modeled as a 2-D cross-section as shown in Figure 4. To account for the stress and strain effects in the z direction due to thermal expansion mismatch, the model was set as axisymmetric with a radius of rotation significantly larger than the size of the model. This follows an assumption that the sample mid-section has a width large enough where thermal expansion stresses will be equivalent in all in-plane axes.

Figure 1. Specimen Dimensions

Figure 2. Beam Placement
The bottom edge was constrained in the y translation and the left edge was constrained in the x translation. The y translation for the entire top edge was coupled to remain under equal displacement. Due to the manufacturing process of the TBC samples, the different layers are subject to different annealing temperatures. When the samples are cooled to room temperature, residual stresses are developed due to the mismatch in thermal expansion properties. To model this effect, stress-free temperatures are assigned to each material. While further investigation is being done into the variation of the stress-free temperatures between layers, the entire model was assumed to have a stress-free temperature of 1000°C.

The substrate, bond coat, TGO, and top coat, were modeled at 1 mm, 50 μm, 0.5 μm, and 125 μm, respectively. It was assumed that the substrate would be large enough relative to the other layers, particularly the TGO, since it was of greatest importance. The TGO layer was set to 0.5 μm in order to represent the as-coated stages of TGO growth in the TBC sample. The material properties were kept consistent with the work of Hernandez et al.¹⁰ based on the similarity of the properties to the experimental setup. The temperature dependent material properties are shown in Table 1.

Creep effects are considered to be most prominent in the TGO and Bond Coat. This is represented using the Norton creep model shown in Eq. (1). The creep constants for the TGO and Bond Coat layers were defined as shown in Table 2 from previous studies by¹² and¹³ respectively. For low cycle fatigue investigation, the TGO growth will be taken into consideration. This is done by using a swelling effect for the TGO elements, which creates a volume increase. The decrease in volume of the bond coat due to the depletion of the alumina from the bond coat is assumed to be minimal. Growth strains are set individually for the out-of-plane and in-plane directions to be consistent with findings from Hernandez et al.¹⁰.

Table 1. Temperature Dependent Material Properties

<table>
<thead>
<tr>
<th></th>
<th>Substrate</th>
<th>Bond Coat</th>
<th>TGO</th>
<th>YSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT</td>
<td>HT</td>
<td>RT</td>
<td>HT</td>
</tr>
<tr>
<td>Elastic Modulus, E (GPa)</td>
<td>215</td>
<td>148</td>
<td>140</td>
<td>70</td>
</tr>
<tr>
<td>Poisson Ratio, ν</td>
<td>0.3</td>
<td>0.3</td>
<td>0.322</td>
<td>0.351</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion, CTE [10^-6 1/K]</td>
<td>11.5</td>
<td>18.8</td>
<td>8.6</td>
<td>16.6</td>
</tr>
<tr>
<td>Thermal Conductivity, λ [W/mK]</td>
<td>15</td>
<td>30</td>
<td>8.7</td>
<td>27.5</td>
</tr>
<tr>
<td>Density, ρ [g/cm³]</td>
<td>7.75</td>
<td>7.29</td>
<td>7.80</td>
<td>7.43</td>
</tr>
<tr>
<td>Heat Capacity, C_p [J/kgK]</td>
<td>400</td>
<td>580</td>
<td>390</td>
<td>700</td>
</tr>
</tbody>
</table>

5292
\[\varepsilon = C_1 \sigma^2 \exp \left(-\frac{C_3}{T} \right) \] (1)

<table>
<thead>
<tr>
<th>Table 2. Creep Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>TGO</td>
</tr>
<tr>
<td>Bond Coat</td>
</tr>
</tbody>
</table>

IV. Results

With the model assumptions that each layer is perfectly planar with minimal roughness, only the in-plane stresses and strains are comparable between the model and experimental results. Shown below in Figure 6 from Diaz et al.\(^{14}\) are the in-plane strains resulting from the XRD analysis. The strain profile across the depth of the layers is shown for each mechanical load at the first three data collection points of the cycle. This confirms from previous studies the highly compressive nature of the TGO layer at room temperature.\(^{7}\) The first high temperature plot shown demonstrates how the TGO becomes tensile when subjected to a 64 MPa tensile load. The stress becomes increasingly compressive when held constant at high temperature bringing the TGO back into the compressive region. This transient stress phenomenon is further demonstrated in Figure 7, which displays the TGO in-plane transient stress. Using various creep models, this effect is validated and is a main topic of investigation for single cycle modeling.

The residual stresses are then used as a form of validation for the finite element model. The TGO stresses, in particular,

![Experimental In-Plane Strain (Figure from [14])](image)

are used for comparison due to their very high stresses relative to the other layers. Table 3 below shows the comparison of the finite element results to that of the XRD results.

Figures 8 and 9 then show the transient stress results for both the bond coat and TGO, respectively, throughout the beginning duration of the load cycle. This shows the nonlinear transient behavior of both layers, including a corresponding stress relaxation of the TGO layer. This is largely due to the creep strain experienced in both layers, which is shown in Figures 10 and 11 for the bond coat and TGO respectively.

![Experimental TGO In-Plane Transient Stress](image)

5293
Table 3 – TGO Residual Stress Comparison

<table>
<thead>
<tr>
<th></th>
<th>FEA (GPa)</th>
<th>Experimental (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 MPa</td>
<td>-2.41</td>
<td>-2.39</td>
</tr>
<tr>
<td>32 MPa</td>
<td>-2.36</td>
<td>-2.33</td>
</tr>
<tr>
<td>64 MPa</td>
<td>-2.25</td>
<td>-2.30</td>
</tr>
</tbody>
</table>

Figure 8. Bond Coat In–Plane Stress

Figure 9 – TGO In–Plane Stress

After accurately modeling the material behavior throughout a cycle, the low cycle fatigue effects are then analyzed. The previous load cycle will be replicated for 20 consecutive cycles and higher and the stress progression measured over time. These results will be used to validate the TGO growth stress models with the synchrotron strain measurements of the cycled specimens.

Figure 10. Bond Coat In-Plane Creep Strain

Figure 11. TGO In-Plane Creep Strain
V. Conclusion

Results are analyzed and used to develop accurate material models of the coating system, which experiences non-linear behavior such as large temperature variation, creep, and oxide growth. In-situ strain measurements were obtained for various in-cycle loading condition representative of an in-flight load cycle. This has shown that the TGO becomes tensile at operating temperature when exhibiting a 64 MPa tensile load. This tensile condition then relaxes into the compressive region while held at constant high temperature. Finite element models were created and used to compare various nonlinear material models in achieving the stress relaxation realized experimentally. The validated model of this behavior is a significant step towards understanding how the stresses in the interface between layers progress through fatigue cycling. Using these models, simulations can be conducted for stress mapping and crack growth and propagation of fatigued coating systems, which are ultimately used to extend turbine blade life and coating efficiency.

Acknowledgments

The authors would like to acknowledge Dr. Charles D. Norton, NASA JPL, NASA STTR contract# NNX10CB63C for supporting this research. Experimental studies were supported by the National Science Foundation under Grant No. 1125696. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

REFERENCES

5295
While there has been significant experimental research done in the after cycling fatigue effects, validated predictions of the stress evolution throughout the thermal-mechanical cycle are limited. To meet the challenges of studying turbine blades under operating conditions, thermal and mechanical loads have been applied to samples to simulate the in-cycle conditions, while allowing in-situ measurements using X-ray diffraction in our recent work. These high-resolution strain measurements are then used to validate nonlinear material behavior, which causes stress relaxation throughout a cycle.

Finite element models, which include creep and TGO growth, were developed to show the transient strain evolution of the TBC layers while being raised to and held at high temperature. Different creep models are tested for the bond coat and TGO layers to compare the stress relaxation realized from the experimental results. A validated model of the in-cycle strain behavior allows for the creation of models predicting TGO failure under cyclic loads. For models simulating cyclic loading conditions, swelling behavior is included in the element material models to represent growth of the TGO layer. This study will show the stress progression throughout a high-cycle life span of a coated turbine blade.

II. Experimental

Parameters for the numerical simulations were based on experimental studies of Electron Beam Physical Vapor Deposition (EB-PVD) coated nickel-based superalloy substrate samples which have been subjected to thermal-mechanical load cycles and monitored in-cycle for synchronization x-ray diffraction strain measurements. Simulating the fatigue analysis of the coatings, the samples were pre-cycled to various stages of a TBC life cycle. These samples were manufactured for as-coated, 50 cycles, and 200 cycles. These samples, with dimensions shown in Figure 1, were subjected to a load cycle representative of that experienced by a turbine blade.

Three tensile mechanical stresses of 16, 32, and 64 MPa were applied throughout separate thermal cycles to simulate the centrifugal load on turbine blades. For each test, the samples were subject to uniform heating to a temperature of 1220 °C. The samples were then held at high temperature for duration of one hour. Strain measurements were collected for each layer at the data collection points shown in Figure 2.

The tensile specimens shown in Figure 1, were used to allow for in-situ strain measurements in the layered profile. The applied thermal fatigue cycle is shown in Figure 3. The high-energy beam of 80 keV was oriented as shown in Figure 2 while moving the sample laterally for the depth-resolved layer measurements as shown in Figure 4. The X-ray images were taken with a 2D CCD and analyzed for strain development across each layer while paying particular attention to the strain evolution in the TGO region. Further detail on the experimental setup is described by Diaz et al.1

III. Modeling

The TBC coated tensile specimens were modeled as a 2-D cross-section as shown in Figure 5. To account for the stress and strain effects in the z direction due to thermal expansion mismatch, the model was set as axisymmetric with a radius of rotation significantly larger than the size of the model. This follows an assumption that the sample mid-section has a width large enough where thermal expansion stresses will be equivalent in all in-plane axes.

Figure 1. Specimen Dimensions

Figure 2. Beam Placement

Figure 3. In-situ Strain Measurement

Figure 4. X-ray Imaging
The bottom edge was constrained in the y translation and the left edge was constrained in the x translation. The y translation for the clamped top edge was required to remain under equal displacement. Due to the manufacturing process of the TDC sample, the different layers are subject to different annealing temperatures. When the samples are cooled to room temperature, residual stresses are developed due to the mismatch in thermal expansion properties. To model these effects, temperatures are assigned to each material. While further investigation is being done into the variation of the stress-free temperatures between layers, the entire model was assumed to have a stress-free temperature of 1000°C.

The substrate, bond coat, TGO, and top coat were modeled at 1 mm, 50 μm, 0.5 μm, and 125 μm, respectively. It was assumed that the substrate would be large enough relative to the other layers, particularly the TGO, since it was of greatest importance. The TGO layer was set to 0.5 μm in order to represent the as-machined stages of TGO growth in the TDC sample. The material properties were kept consistent with the work of Hernandez et al. based on the similarity of the properties in the experimental setup. The temperature-dependent material properties are shown in Table 1.

Growth effects are considered to be most prominent in the TGO and bond coat. This is represented using the Norton creep model shown in Eq. (10). The creep constants for the TGO and bond coat layers were defined as shown in Table 2, from previous studies by " and " respectively. For low cycle fatigue investigation, the TGO growth will be taken into consideration. This is done by using a swelling effect for the TGO elements, which creates a volume increase. The decrease in volume of the bond coat due to the depletion of the alumina from the bond coat is assumed to be minimal. Growth strains are set individually for the out-of-plane and in-plane directions to be consistent with findings from Hernandez et al.15

Figure 1. In-Situ Load Cycle Data Collection

Figure 4. Specimen Coating Model

Figure 5. Boundary Conditions

Table 1. Temperature Dependent Material Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Substrate</th>
<th>Bond Coat</th>
<th>TGO</th>
<th>Top Coat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>7.775</td>
<td>7.229</td>
<td>7.86</td>
<td>7.86</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion (ppm/°C)</td>
<td>11.6</td>
<td>20.5</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Thermal Conductivity (W/mK)</td>
<td>233</td>
<td>257</td>
<td>27.5</td>
<td>27.5</td>
</tr>
<tr>
<td>Heat Capacity (J/g°C)</td>
<td>1.203</td>
<td>4.643</td>
<td>1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>
Table 7: Creep Constants

<table>
<thead>
<tr>
<th>Layer</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGO</td>
<td>1.08e-4</td>
<td>2.3</td>
<td>51000</td>
</tr>
<tr>
<td>Bond</td>
<td>8.96e-4</td>
<td>3.0</td>
<td>55340</td>
</tr>
</tbody>
</table>

IV. Results

With the model assumptions that each layer is perfectly planar with minimal roughness, only the in-plane stresses and strains are comparable between the model and experimental results. Shown below in Figure 6 from Diaz et al.⁼ are the in-plane strains resulting from the XRD analysis. The strain profile across the depth of the layers is shown for each mechanical load at the first three data collection points of the cycle. This confirms from previous studies, the highly compressive nature of the TGO layer at room temperature. The first high temperature plot shown demonstrates how the TGO becomes tensile when subjected to a 64 MPa tensile load. The stress becomes increasingly compressive when held constant at high temperature bringing the TGO back into the compressive region. This transient stress phenomenon is further demonstrated in Figure 7, which displays the TGO in-plane transient stress. Using various creep models, they are validated and are a main focus of investigation for single cycle modeling.

The residual stresses are then used as a form of validation for the finite element model. The TGO stresses, in particular, are used for comparison due to their very high stresses relative to the other layers. Table 7 below shows the comparison of the finite element reality to that of the XRD results.

Figures 8 and 9 then show the transient stress results for both the bond coat and TGO, respectively, throughout the beginning duration of the load cycle. This shows the nonlinear transient behavior of both layers, including a corresponding stress relaxation of the TGO layer. This is largely due to the creep strain experienced in both layers, which is shown in Figures 10 and 11 for the bond coat and TGO respectively.

Figure 6: Experimental In-Plane Strain (Figure from [4])

Experimental TGO stress

Figure 7: Experimental TGO In-Plane Transient Stress